Circulating Oxidized mtDNA is Associated Broadly with Cardiovascular Disease in a Longitudinal Cohort Study of Psoriasis

银屑病纵向队列研究表明循环氧化线粒体 DNA 与心血管疾病密切相关

阅读:6
作者:Sundus S Lateef, Grace A Ward, Haiou Li, Carla Pantoja, Elizabeth Florida, Christin G Hong, Justin Rodante, Andrew Keel, Marcus Y Chen, Alexander V Sorokin, Martin P Playford, Nehal N Mehta

Abstract

Psoriasis (PSO) is a chronic and systemic inflammatory autoimmune disease associated with atherosclerosis and myocardial infarction. Given that atherosclerosis is both inflammation and immune driven, we sought to expand on known immune and inflammatory biomarkers in a PSO cohort. In this study, we focus on oxidized mtDNA (ox-mtDNA), a product of cells undergoing pyroptosis, including keratinocytes, which was quantified in patients with PSO and individuals without PSO by ELISA. Patients with PSO had significantly higher ox-mtDNA levels than healthy subjects (mean ± SD = 9246 ± 2518 pg/ml for patients with PSO vs 7382 ± 2506 pg/ml for those without; P = .006). Importantly, ox-mtDNA was positively associated with IL-17a (β = 0.25; P = .03) and low-density granulocytes (β = 0.37; P = .005) but negatively associated with high-density lipoprotein-cholesterol (β = -0.29; P = .006). After adjusting for traditional cardiovascular risk factors, we found that ox-mtDNA was associated with noncalcified coronary burden, which was measured by coronary computed tomography angiography (β = 0.19; P = .003). Biologic-naïve patients with PSO receiving anti-IL-17a therapy had a 14% decrease in ox-mtDNA (mean ± SD: 10540 ± 614 pg/ml at baseline to 9016 ± 477 pg/ml at 1 year; P = .016) and a 10% reduction in noncalcified coronary artery burden (mean ± SD: 1.06 ± 0.45 at baseline, reducing to 0.95 ± 0.35 at 1 year; P = .0037). In summary, levels of ox-mtDNA in PSO are associated with measures of coronary plaque formation, indicating that this biomarker may be an autoimmune-driven early atherosclerotic feature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。