Differentially Expressed Genes in Response to a Squalene-Supplemented Diet Are Accurate Discriminants of Porcine Non-Alcoholic Steatohepatitis

响应角鲨烯补充饮食的差异表达基因是猪非酒精性脂肪性肝炎的准确判别因素

阅读:7
作者:Roubi Abuobeid, Luis V Herrera-Marcos, Carmen Arnal, Seyed Hesamoddin Bidooki, Javier Sánchez-Marco, Roberto Lasheras, Joaquín C Surra, María Jesús Rodríguez-Yoldi, Roberto Martínez-Beamonte, Jesús Osada

Abstract

Squalene is the major unsaponifiable component of virgin olive oil, the fat source of the Mediterranean diet. To evaluate its effect on the hepatic transcriptome, RNA sequencing was carried out in two groups of male Large White x Landrace pigs developing nonalcoholic steatohepatitis by feeding them a high fat/cholesterol/fructose and methionine and choline-deficient steatotic diet or the same diet with 0.5% squalene. Hepatic lipids, squalene content, steatosis, activity (ballooning + inflammation), and SAF (steatosis + activity + fibrosis) scores were analyzed. Pigs receiving the latter diet showed hepatic squalene accumulation and twelve significantly differentially expressed hepatic genes (log2 fold change < 1.5 or <1.5) correlating in a gene network. These pigs also had lower hepatic triglycerides and lipid droplet areas and higher cellular ballooning. Glutamyl aminopeptidase (ENPEP) was correlated with triglyceride content, while alpha-fetoprotein (AFP), neutralized E3 ubiquitin protein ligase 3 (NEURL3), 2'-5'-oligoadenylate synthase-like protein (OASL), and protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B) were correlated with activity reflecting inflammation and ballooning, and NEURL3 with the SAF score. AFP, ENPEP, and PPP1R1B exhibited a remarkably strong discriminant power compared to those pathological parameters in both experimental groups. Moreover, the expression of PPP1R1B, TMEM45B, AFP, and ENPEP followed the same pattern in vitro using human hepatoma (HEPG2) and mouse liver 12 (AML12) cell lines incubated with squalene, indicating a direct effect of squalene on these expressions. These findings suggest that squalene accumulated in the liver is able to modulate gene expression changes that may influence the progression of non-alcoholic steatohepatitis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。