Creation of human hematopoietic chimeric cell (HHCC) line as a novel strategy for tolerance induction in transplantation

创建人类造血嵌合细胞 (HHCC) 系作为移植耐受诱导的新策略

阅读:6
作者:Maria Siemionow, Sonia Brodowska, Klaudia Różczka, Claire Roesler

Background

Cell-based and chimerism-based therapies represent a promising approach for tolerance induction in transplantation. We propose a new cell therapy of the ex vivo created human hematopoietic chimeric cells (HHCC) as an alternative approach to bone marrow (BM)-based therapies in support of solid organ and vascularized composite allotransplantation (VCA). This study aimed to characterize in vitro the phenotype, genotype, clonogenic, and tolerogenic properties of HHCC.

Conclusions

We have created a new hematopoietic cell line of HHCC from two unrelated human donors, and have successfully characterized in vitro, viability, phenotype, genotype, clonogenic, and tolerogenic properties of HHCC. These unique immunomodulatory and tolerogenic properties introduce HHCC as a novel therapeutic approach for tolerance induction in VCA and solid organ transplantation.

Methods

Thirty ex vivo fusions of CD34+ cells from two unrelated human BM donors were performed. CD34+ cells were stained separately with PKH26 and PKH67 membrane dyes and fused using polyethylene glycol (PEG). Creation of human HHCC and chimeric state was confirmed by flow cytometry (FC), confocal microscopy (CM) and electron microscopy (EM). HHCC's phenotype (CD34, CD133, CD117, CD4, CD19, CD4/CD25) was assessed by FC, viability by Trypan Blue, LIVE/DEAD and apoptosis by AnnexinV/Sytox Blue and TUNEL assay, while mixed lymphocyte reaction (MLR) assay assessed HHCC's immunogenicity and tolerogenic properties. HHCC differentiation, proliferation and clonogenic potential were assessed by the colony forming unit (CFU). Polyploidy was evaluated by fluorescence in situ hybridization (FISH), whereas polymerase chain reaction-reverse sequence-specific oligonucleotide probe (PCR-rSSOP) and short tandem repeats-polymerase chain reaction (STR-PCR) assessed HHCC's genotype, and chimerism. Reverse transcription polymerase chain reaction (RT-PCR) analyzed cytokines secretion [interleukin (IL)-10, transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α)] up to 14 days post-fusion.

Results

FC and CM confirmed creation of HHCC by fusion of CD34+ cells from two unrelated human donors. After fusion, maintenance of hematopoietic markers and increased expression of Treg-cells (CD4/CD25) was confirmed. Moreover, high HHCC viability (99%) and a low apoptosis rate (1.2%) were revealed HHCC presented decreased immunogenicity by MLR, and significant, 40-fold increase of IL-10 the pro-tolerogenic cytokine at 21 days after fusion (RT-PCR) P<0.0001. The number of polyploid cells was negligible (0.48%). PCR-rSSOP of HHCC after fusion confirmed presence of human leukocyte antigen (HLA) class I and class II-alleles and presence of the loci specific for both CD34+ cells BM donors by STR-PCR. Conclusions: We have created a new hematopoietic cell line of HHCC from two unrelated human donors, and have successfully characterized in vitro, viability, phenotype, genotype, clonogenic, and tolerogenic properties of HHCC. These unique immunomodulatory and tolerogenic properties introduce HHCC as a novel therapeutic approach for tolerance induction in VCA and solid organ transplantation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。