Ryanodine- and CaMKII-dependent release of endogenous CGRP induces an increase in acetylcholine quantal size in neuromuscular junctions of mice

瑞安诺丁和 CaMKII 依赖的内源性 CGRP 释放可诱导小鼠神经肌肉接头处乙酰胆碱量子尺寸增加

阅读:8
作者:Alexander E Gaydukov, Olga P Balezina

Conclusions

We propose that the activity of presynaptic CaMKII is necessary for the ryanodine-stimulated release of endogenous CGRP from motor nerve terminals, but CaMKII does not participate in signaling downstream the activation of CGRP-receptors followed by quantal size increase.

Methods

Using intracellular microelectrode recordings of MEPPs and evoked endplate potentials (EPPs), the changes in spontaneous and evoked acetylcholine release in motor synapses of mouse diaphragm neuromuscular preparations were studied.

Objective

The aim of this study was to identify the mechanism responsible for an increase in miniature endplate potentials (MEPPs) amplitude, induced by ryanodine as an agonist of ryanodine receptors in mouse motor nerve terminals.

Results

Ryanodine (0.1 μM) increased both the amplitudes of MEPPs and EPPs to a similar extent (up to 130% compared to control). The ryanodine effect was prevented by blockage of receptors of calcitonin gene-related peptide (CGRP) by a truncated peptide CGRP8-37 . Endogenous CGRP is stored in large dense-core vesicles in motor nerve terminals and may be released as a co-transmitter. The ryanodine-induced increase in MEPPs amplitude may be fully prevented by inhibition of vesicular acetylcholine transporter by vesamicol or by blocking the activity of protein kinase A with H-89, suggesting that endogenous CGRP is released in response to the activation of ryanodine receptors. Activation of CGRP receptors can, in turn, upregulate the loading of acetylcholine into synaptic vesicles, which will increase the quantal size. This new feature of endogenous CGRP activity looks similar to recently described action of exogenous CGRP in motor synapses of mice. The ryanodine effect was prevented by inhibitors of Ca/Calmodulin-dependent kinase II (CaMKII) KN-62 or KN-93. Inhibition of CaMKII did not prevent the increase in MEPPs amplitude, which was caused by exogenous CGRP. Conclusions: We propose that the activity of presynaptic CaMKII is necessary for the ryanodine-stimulated release of endogenous CGRP from motor nerve terminals, but CaMKII does not participate in signaling downstream the activation of CGRP-receptors followed by quantal size increase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。