Differential effects of palmitate and palmitoleate on insulin action and glucose utilization in rat L6 skeletal muscle cells

棕榈酸和棕榈油酸对大鼠 L6 骨骼肌细胞胰岛素作用和葡萄糖利用的不同影响

阅读:6
作者:Nikolaos Dimopoulos, Maria Watson, Kei Sakamoto, Harinder S Hundal

Abstract

An increase in circulating levels of specific NEFAs (non-esterified fatty acids) has been implicated in the pathogenesis of insulin resistance and impaired glucose disposal in skeletal muscle. In particular, elevation of SFAs (saturated fatty acids), such as palmitate, has been correlated with reduced insulin sensitivity, whereas an increase in certain MUFAs and PUFAs (mono- and poly-unsaturated fatty acids respectively) has been suggested to improve glycaemic control, although the underlying mechanisms remain unclear. In the present study, we compare the effects of palmitoleate (a MUFA) and palmitate (a SFA) on insulin action and glucose utilization in rat L6 skeletal muscle cells. Basal glucose uptake was enhanced approx. 2-fold following treatment of cells with palmitoleate. The MUFA-induced increase in glucose transport led to an associated rise in glucose oxidation and glycogen synthesis, which could not be attributed to activation of signalling proteins normally modulated by stimuli such as insulin, nutrients or cell stress. Moreover, although the MUFA-induced increase in glucose uptake was slow in onset, it was not dependent upon protein synthesis, but did, nevertheless, involve an increase in the plasma membrane abundance of GLUT1 and GLUT4. In contrast, palmitate caused a substantial reduction in insulin signalling and insulin-stimulated glucose transport, but was unable to antagonize the increase in transport elicited by palmitoleate. Our findings indicate that SFAs and MUFAs exert distinct effects upon insulin signalling and glucose uptake in L6 muscle cells and suggest that a diet enriched with MUFAs may facilitate uptake and utilization of glucose in normal and insulin-resistant skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。