Enhanced Gas Separation Prowess Using Functionalized Lignin-Free Lignocellulosic Biomass/Polysulfone Composite Membranes

使用功能化无木质素木质纤维素生物质/聚砜复合膜增强气体分离能力

阅读:5
作者:Abiodun Abdulhameed Amusa, Abdul Latif Ahmad, Adewole Kayode Jimoh

Abstract

Delignified lignocellulosic biomass was functionalized with amine groups. Then, the pretreated lignin-free date pits cellulose and the amine-functionalized-date pits cellulose (0-5 wt%) were incorporated into a polysulfone polymer matrix to fabricate composite membranes. The amine groups give additional hydrogen bonding to those existing from the hydroxyl groups in the date pits cellulose. The approach gives an efficient avenue to enhance the CO2 molecules' transport pathways through the membrane matrix. The interactions between phases were investigated via Fourier transformed infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), whereas pure gases (CO2 and N2) were used to evaluate the gas separation performances. Additionally, the thermal and mechanical properties of the fabricated composites were tested. The pure polysulfone membrane achieved an optimum separation performance at 4 Bar. The optimum separation performance for the composite membranes is achieved at 2 wt%. About 32% and 33% increments of the ideal CO2/N2 selectivity is achieved for the lignin-free date pits cellulose composite membrane and the amine-functionalized-date pits cellulose composite membrane, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。