Platelet-Derived Growth Factor Subunit A Strengthens the Neurovascular Unit and Inhibits Retinal Vascular Regression Under Hyperoxic Conditions

血小板衍生的生长因子亚基 A 强化神经血管单元并抑制高氧条件下的视网膜血管退化

阅读:13
作者:Kaito Yokota, Haruhiko Yamada, Hidetsugu Mori, Yuki Hattori, Masatoshi Omi, Yuichi Yamamoto, Keiko Toyama, Hisanori Imai

Abstract

Retinopathy of prematurity (ROP) is primarily caused by the exposure of preterm infants with underdeveloped blood vessels to high oxygen concentrations. This damages the astrocytes that promote normal vascular development, leading to avascularity, pathological neovascularization, and retinal detachment, and even blindness as the disease progresses. In this study, the aim was to investigate the differences in the characteristics of astrocytes and blood vessels between wild-type (WT) and genetically modified mice overexpressing platelet-derived growth factor subunit A (PDGF-A) in the retina immediately after high oxygen exposure, a protocol in the oxygen-induced retinopathy (OIR) model of ROP. Our results showed that PDGF-A mice exhibited an increased population of astrocytes and higher vascular density than WT mice and that PDGF-A strengthened the resistance to hyperoxic conditions. In the OIR model, PDGF-A mice had reduced avascular zone areas following hyperoxia exposure. Furthermore, immunostaining for NG2 and CD31 showed that pericytes tended to regress earlier than endothelial cells, particularly at the vessel edges in both WT and transgenic mice, indicating relatively higher susceptibility to hyperoxia-induced damage. These findings suggest that PDGF-A plays a crucial role in stabilizing retinal vessels and may serve as a novel therapeutic target for ROP, highlighting the potential significance of PDGF-A in the pathological mechanisms of retinal diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。