Effect of quercetin on lipid membrane rigidity: assessment by atomic force microscopy and molecular dynamics simulations

槲皮素对脂质膜刚性的影响:通过原子力显微镜和分子动力学模拟评估

阅读:10
作者:Jad Eid, Alia Jraij, Hélène Greige-Gerges, Luca Monticelli

Abstract

Quercetin (3,3',4',5,7-pentahydroxyl-flavone) is a natural flavonoid with many valuable biological effects, but its solubility in water is low, posing major limitations in applications. Quercetin encapsulation in liposomes increases its bioavailability; the drug effect on liposome elastic properties is required for formulation development. Here, we quantify the effect of quercetin molecules on the rigidity of lipoid E80 liposomes using atomic force microscopy (AFM) and molecular dynamics (MD) simulations. AFM images show no effect of quercetin molecules on liposomes morphology and structure. However, AFM force curves suggest that quercetin softens lipid membranes; the Young modulus measured for liposomes encapsulating quercetin is smaller than that determined for blank liposomes. We then used MD simulations to interpret the effect of quercetin on membrane rigidity in terms of molecular interactions. The decrease in membrane rigidity was confirmed by the simulations, which also revealed that quercetin affects structural and dynamic properties: membrane thickness is decreased, acyl chains disorder is increased, and diffusion coefficients of lipid molecules are also increased. Such changes appear to be related to the preferential localization of quercetin within the membrane, near the interface between the hydrophobic core and polar head groups of the lipids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。