Escargot restricts niche cell to stem cell conversion in the Drosophila testis

蜗牛限制果蝇睾丸中的微环境细胞向干细胞的转化

阅读:5
作者:Justin Voog, Sharsti L Sandall, Gary R Hime, Luís Pedro F Resende, Mariano Loza-Coll, Aaron Aslanian, John R Yates 3rd, Tony Hunter, Margaret T Fuller, D Leanne Jones

Abstract

Stem cells reside within specialized microenvironments, or niches, that control many aspects of stem cell behavior. Somatic hub cells in the Drosophila testis regulate the behavior of cyst stem cells (CySCs) and germline stem cells (GSCs) and are a primary component of the testis stem cell niche. The shutoff (shof) mutation, characterized by premature loss of GSCs and CySCs, was mapped to a locus encoding the evolutionarily conserved transcription factor Escargot (Esg). Hub cells depleted of Esg acquire CySC characteristics and differentiate as cyst cells, resulting in complete loss of hub cells and eventually CySCs and GSCs, similar to the shof mutant phenotype. We identified Esg-interacting proteins and demonstrate an interaction between Esg and the corepressor C-terminal binding protein (CtBP), which was also required for maintenance of hub cell fate. Our results indicate that niche cells can acquire stem cell properties upon removal of a single transcription factor in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。