Cinnamate-based DNA photolithography

基于肉桂酸盐的 DNA 光刻技术

阅读:5
作者:Lang Feng, Joy Romulus, Minfeng Li, Ruojie Sha, John Royer, Kun-Ta Wu, Qin Xu, Nadrian C Seeman, Marcus Weck, Paul Chaikin

Abstract

As demonstrated by means of DNA nanoconstructs, as well as DNA functionalization of nanoparticles and micrometre-scale colloids, complex self-assembly processes require components to associate with particular partners in a programmable fashion. In many cases the reversibility of the interactions between complementary DNA sequences is an advantage. However, permanently bonding some or all of the complementary pairs may allow for flexibility in design and construction. Here, we show that the substitution of a cinnamate group for a pair of complementary bases provides an efficient, addressable, ultraviolet light-based method to bond complementary DNA covalently. To show the potential of this approach, we wrote micrometre-scale patterns on a surface using ultraviolet light and demonstrated the reversible attachment of conjugated DNA and DNA-coated colloids. Our strategy enables both functional DNA photolithography and multistep, specific binding in self-assembly processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。