Trophoblast-secreted soluble-PD-L1 modulates macrophage polarization and function

滋养层细胞分泌的可溶性 PD-L1 调节巨噬细胞极化和功能

阅读:7
作者:Yong-Hong Zhang, Paulomi Aldo, Yuan You, Jiahui Ding, Janina Kaislasuo, Jesper F Petersen, Ellen Lokkegaard, Gang Peng, Michael J Paidas, Samantha Simpson, Lubna Pal, Seth Guller, Hong Liu, Ai Hua Liao, Gil Mor

Abstract

Decidual macrophages are in close contact with trophoblast cells during placenta development, and an appropriate crosstalk between these cellular compartments is crucial for the establishment and maintenance of a healthy pregnancy. During different phases of gestation, macrophages undergo dynamic changes to adjust to the different stages of fetal development. Trophoblast-secreted factors are considered the main modulators responsible for macrophage differentiation and function. However, the phenotype of these macrophages induced by trophoblast-secreted factors and the factors responsible for their polarization has not been elucidated. In this study, we characterized the phenotype and function of human trophoblast-induced macrophages. Using in vitro models, we found that human trophoblast-educated macrophages were CD14+ CD206+ CD86- and presented an unusual transcriptional profile in response to TLR4/LPS activation characterized by the expression of type I IFN-β expression. IFN-β further enhances the constitutive production of soluble programmed cell death ligand 1 (PD-L1) from trophoblast cells. PD-1 blockage inhibited trophoblast-induced macrophage differentiation. Soluble PD-L1 (sPD-L1) was detected in the blood of pregnant women and increased throughout the gestation. Collectively, our data suggest the existence of a regulatory circuit at the maternal fetal interface wherein IFN-β promotes sPD-L1 expression/secretion by trophoblast cells, which can then initiate a PD-L1/PD-1-mediated macrophage polarization toward an M2 phenotype, consequently decreasing inflammation. Macrophages then maintain the expression of sPD-L1 by the trophoblasts through IFN-β production induced through TLR4 ligation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。