Monoamine Oxidase Contributes to Valvular Oxidative Stress: A Prospective Observational Pilot Study in Patients with Severe Mitral Regurgitation

单胺氧化酶导致瓣膜氧化应激:重度二尖瓣反流患者的前瞻性观察性试点研究

阅读:4
作者:Raluca Șoșdean, Maria D Dănilă, Loredana N Ionică, Alexandru S Pescariu, Monica Mircea, Adina Ionac, Cristian Mornoș, Constantin T Luca, Horea B Feier, Danina M Muntean, Adrian Sturza

Abstract

Monoamine oxidases (MAOs), mitochondrial enzymes that constantly produce hydrogen peroxide (H2O2) as a byproduct of their activity, have been recently acknowledged as contributors to oxidative stress in cardiometabolic pathologies. The present study aimed to assess whether MAOs are mediators of valvular oxidative stress and interact in vitro with angiotensin 2 (ANG2) to mimic the activation of the renin-angiotensin system. To this aim, valvular tissue samples were harvested from 30 patients diagnosed with severe primary mitral regurgitation and indication for surgical repair. Their reactive oxygen species (ROS) levels were assessed by means of a ferrous oxidation xylenol orange (FOX) assay, while MAO expression was assessed by immune fluorescence (protein) and qRT-PCR (mRNA). The experiments were performed using native valvular tissue acutely incubated or not with angiotensin 2 (ANG2), MAO inhibitors (MAOI) and the angiotensin receptor blocker, irbesartan (Irb). Correlations between oxidative stress and echocardiographic parameters were also analyzed. Ex vivo incubation with ANG2 increased MAO-A and -B expression and ROS generation. The level of valvular oxidative stress was negatively correlated with the left ventricular ejection fraction. MAOI and Irb reduced valvular H2O2. production. In conclusion, both MAO isoforms are expressed in pathological human mitral valves and contribute to local oxidative stress and ventricular functional impairment and can be modulated by the local renin-angiotensin system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。