Melatonin salvages lead-induced neuro-cognitive shutdown, anxiety, and depressive-like symptoms via oxido-inflammatory and cholinergic mechanisms

褪黑激素通过氧化炎症和胆碱能机制挽救铅引起的神经认知关闭、焦虑和抑郁样症状

阅读:8
作者:Noah A Omeiza, Halimat A Abdulrahim, Abdullateef I Alagbonsi, Precious U Ezurike, Talha K Soluoku, Happy Isiabor, Abdulmusawwir A Alli-Oluwafuyi

Conclusion

These findings suggest that melatonin down-regulates neurotoxicant interplays in the brain systems. Therefore, this study suggests the use of melatonin as an adjuvant therapy in neuropathological disorders/dysfunctions.

Methods

Twenty male Wistar rats were blindly randomized into four groups (n = 5/group): group 1 to 4 underwent intragastric administration of physiological saline (10 ml/kg; vehicle), PbCl2 (50 mg/kg), melatonin (10 mg/kg) and PbCl2 + melatonin respectively for a period of 4 weeks during which neurobehavioral data were extracted, followed by neurochemical and histopathological evaluations.

Objective

To assess the therapeutic role of melatonin on cognitive deficit, anxiety and depressive-like symptoms in matured male Wistar rats exposed to a subchronic lead chloride (PbCl2 ).

Results

Exposure to PbCl2 reduced cognitive performance by increasing the escape latency and average proximity to the platform zone border, decreasing average path length in the platform zone, cognitive score, and time spent in probing. It raised the thigmotaxis percentage, time spent in rearing, number of pellet-like feces, and time spent in the dark compartment of a bright/dark box which are predictors of anxiety. It also induced depressive-like behavior as immobility time was enhanced. PbCl2 deranged neurochemicals; malondialdehyde, interlukin-1β, and tumor necrotic factor-α were increased while superoxide dismutase and acetylcholinesterase were decreased without remarkable alteration in reduced glutathione and nitric oxide. Administration of PbCl2 further disrupted neuronal settings of hippocampal proper and dentate gyrus. In contrast, the supplementation of melatonin reversed all the neurological consequences of PbCl2 neurotoxicity by eliciting its properties against oxidative and nonoxidative action of PbCl2 .

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。