A tradeoff between bacteriophage resistance and bacterial motility is mediated by the Rcs phosphorelay in Escherichia coli

大肠杆菌中的 Rcs 磷酸化转导介导噬菌体抗性和细菌运动性之间的权衡

阅读:2
作者:Alita R Burmeister, Harleen Tewatia, Chloé Skinner

Abstract

Across the tree of life, pleiotropy is thought to constrain adaptation through evolutionary tradeoffs. However, few examples of pleiotropy exist that are well explained at the genetic level, especially for pleiotropy that is mediated by multiple genes. Here, we describe a set of pleiotropic mutations that mediate two key fitness components in bacteria: parasite resistance and motility. We subjected Escherichia coli to strong selection by phage U136B to obtain 27 independent mucoid mutants. Mucoidy is a phenotype that results from excess exopolysaccharide and can act as a barrier against viral infection but can also interfere with other cellular functions. We quantified the mutants' phage resistance using efficiency of plaquing assays and swimming motility using swim agar plates, and we sequenced the complete genomes of all mutants to identify mucoid-causing mutations. Increased phage resistance co-occurred with decreased motility. This relationship was mediated by highly parallel (27/27) mutations to the Rcs phosphorelay pathway, which senses membrane stress to regulate exopolysaccharide production. Together, these results provide an empirical example of a pleiotropic relationship between two traits with intermediate genetic complexity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。