n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation

n-3 多不饱和脂肪酸抑制 CD4+ T 细胞活化过程中磷脂酰肌醇 4,5-双磷酸依赖性肌动蛋白重塑

阅读:12
作者:Tim Y Hou, Jennifer M Monk, Yang-Yi Fan, Rola Barhoumi, Yong Q Chen, Gonzalo M Rivera, David N McMurray, Robert S Chapkin

Abstract

n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。