Molecular and functional characterization of Kv7 K+ channel in murine gastrointestinal smooth muscles

小鼠胃肠道平滑肌中 Kv7 K+ 通道的分子和功能特征

阅读:11
作者:Thomas A Jepps, Iain A Greenwood, James D Moffatt, Kenton M Sanders, Susumu Ohya

Abstract

Members of the K(v)7 voltage-gated K(+) channel family are important determinants of cardiac and neuronal membrane excitability. Recently, we and others have shown that K(v)7 channels are also crucial regulators of smooth muscle activity. The aim of the present study was to assess the K(v)7 expression in different parts of the murine gastrointestinal (GI) tract and to assess their functional roles by use of pharmacological agents. Of KCNQ/K(v)7 members, both KCNQ4/K(v)7.4 and KCNQ5/K(v)7.5 genes and proteins were the most abundantly expressed K(v)7 channels in smooth muscles throughout the GI tract. Immunohistochemical staining also revealed that K(v)7.4 and K(v)7.5 but not K(v)7.1 were expressed in the circular muscle layer of the colon. In segments of distal colon circular muscle exhibiting spontaneous phasic contractions, the nonselective K(v)7 blockers XE991 and linopirdine increased the integral of tension. Increases in the integral of tension were also observed under conditions of neuronal blockade. Similar effects, although less marked, were observed in the proximal colon. As expected, the K(v)7.1-selective blocker chromanol 293B had no effect in either type of segment. These data show that K(v)7.x especially K(v)7.4 and K(v)7.5 are expressed in different regions of the murine gastrointestinal tract and blockers of K(v)7 channels augment inherent contractile activity. Drugs that selectively block K(v)7.4/7.5 might be promising therapeutics for the treatment of motility disorders such as constipation associated with irritable bowel syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。