A Comprehensive Proteomic and Phosphoproteomic Analysis of Retinal Pigment Epithelium Reveals Multiple Pathway Alterations in Response to the Inflammatory Stimuli

视网膜色素上皮的全面蛋白质组学和磷酸化蛋白质组学分析揭示了响应炎症刺激的多种途径改变

阅读:8
作者:Juha Song, Dohyun Han, Heonyi Lee, Da Jung Kim, Joo-Youn Cho, Jae-Hak Park, Seung Hyeok Seok

Abstract

Overwhelming and persistent inflammation of retinal pigment epithelium (RPE) induces destructive changes in the retinal environment. However, the precise mechanisms remain unclear. In this study, we aimed to investigate RPE-specific biological and metabolic responses against intense inflammation and identify the molecular characteristics determining pathological progression. We performed quantitative analyses of the proteome and phosphoproteome of the human-derived RPE cell line ARPE-19 after treatment with lipopolysaccharide (LPS) for 45 min or 24 h using the latest isobaric tandem-mass tags (TMTs) labeling approach. This approach led to the identification of 8984 proteins, of which 261 showed a 1.5-fold change in abundance after 24 h of treatment with LPS. A parallel phosphoproteome analysis identified 20,632 unique phosphopeptides from 3207 phosphoproteins with 3103 phosphorylation sites. Integrated proteomic and phosphoproteomic analyses showed significant downregulation of proteins related to mitochondrial respiration and cell cycle checkpoint, while proteins related to lipid metabolism, amino acid metabolism, cell-matrix adhesion, and endoplasmic reticulum (ER) stress were upregulated after LPS stimulation. Further, phosphorylation events in multiple pathways, including MAPKK and Wnt/β-catenin signalings, were identified as involved in LPS-triggered pathobiology. In essence, our findings reveal multiple integrated signals exerted by RPE under inflammation and are expected to give insight into the development of therapeutic interventions for RPE disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。