Roles of cardiac sympathetic neuroimaging in autonomic medicine

心脏交感神经影像学在自主神经医学中的作用

阅读:6
作者:David S Goldstein, William P Cheshire Jr

Abstract

Sympathetic neuroimaging is based on the injection of compounds that either radiolabel sites of the cell membrane norepinephrine transporter (NET) or that are taken up into sympathetic nerves via the NET and radiolabel intra-neuronal catecholamine storage sites. Detection of the radioactivity is by planar or tomographic radionuclide imaging. The heart stands out among body organs in terms of the intensity of radiolabeling of sympathetic nerves, and virtually all of sympathetic neuroimaging focuses on the left ventricular myocardium. The most common cardiac sympathetic neuroimaging method worldwide is 123I-metaiodobenzylguanidine (123I-MIBG) scanning. 123I-MIBG scanning is used routinely in Europe and East Asia in the diagnostic evaluation of neurogenic orthostatic hypotension (nOH), to distinguish Lewy body diseases (e.g., Parkinson disease with orthostatic hypotension (OH), pure autonomic failure) from non-Lewy body diseases (e.g., multiple system atrophy) and to distinguish dementia with Lewy bodies from Alzheimer's disease. In the USA, 123I-MIBG scanning has been approved by the Food and Drug Administration for the evaluation of pheochromocytoma and some forms of heart failure-but not for the above-mentioned differential diagnoses. Positron emission tomographic methods based on imaging agents such as 18F-dopamine are categorized as research tools, despite more than a quarter century of clinical experience with these modalities. Considering that 123I-MIBG scanning is available at most academic medical centers in the USA, cardiac sympathetic neuroimaging by this methodology merits consideration as an autonomic test, especially in patients with nOH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。