Transcriptome Analysis Suggests PKD3 Regulates Proliferative Glucose Metabolism, Calcium Homeostasis and Microtubule Dynamics After MEF Spontaneous Immortalization

转录组分析表明,在 MEF 自发永生化后,PKD3 调节增殖性葡萄糖代谢、钙稳态和微管动力学

阅读:6
作者:Jocshan Loaiza-Moss, Ursula Braun, Michael Leitges

Abstract

Cell immortalization corresponds to a biologically relevant clinical feature that allows cells to acquire a high proliferative potential during carcinogenesis. In multiple cancer types, Protein Kinase D3 (PKD3) has often been reported as a dysregulated oncogenic kinase that promotes cell proliferation. Using mouse embryonic fibroblasts (MEFs), in a spontaneous immortalization model, PKD3 has been demonstrated as a critical regulator of cell proliferation after immortalization. However, the mechanisms by which PKD3 regulates proliferation in immortalized MEFs require further elucidation. Using a previously validated Prkd3-deficient MEF model, we performed a poly-A transcriptomic analysis to identify putative Prkd3-regulated biological processes and downstream targets in MEFs after spontaneous immortalization. To this end, differentially expressed genes (DEGs) were identified and further analyzed by gene ontology (GO) enrichment and protein-protein interaction (PPI) network analyses to identify potential hub genes. Our results suggest that Prkd3 modulates proliferation through the regulation of gene expression associated with glucose metabolism (Tnf, Ucp2, Pgam2, Angptl4), calcium homeostasis and transport (Calcr and P2rx7) and microtubule dynamics (Stmn2 and Map10). These candidate processes and associated genes represent potential mechanisms involved in Prkd3-induced proliferation in spontaneously immortalized cells as well as clinical targets in several cancer types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。