Vibrational analysis of acetylcholine binding to the M2 receptor

乙酰胆碱与 M2 受体结合的振动分析

阅读:7
作者:Kohei Suzuki, Kota Katayama, Yuji Sumii, Tomoya Nakagita, Ryoji Suno, Hirokazu Tsujimoto, So Iwata, Takuya Kobayashi, Norio Shibata, Hideki Kandori

Abstract

The M2 muscarinic acetylcholine receptor (M2R) is a prototypical G protein-coupled receptor (GPCR) that responds to acetylcholine (ACh) and mediates various cellular responses in the nervous system. We recently established Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy for ligand binding to M2R reconstituted in lipid membranes, paving the way to understand the mechanism in atomic detail. However, the obtained difference FTIR spectra upon ligand binding contained ligand, protein, lipid, and water signals, so a vibrational assignment was needed for a thorough understanding. In the present study, we compared difference FTIR spectra between unlabeled and 2-13C labeled ACh, and assigned the bands at 1741 and 1246 cm-1 as the C[double bond, length as m-dash]O and C-O stretches of ACh, respectively. The C[double bond, length as m-dash]O stretch of ACh in M2R is close to that in aqueous solution (1736 cm-1), and much lower in frequency than the free C[double bond, length as m-dash]O stretch (1778-1794 cm-1), indicating a strong hydrogen bond, which probably formed with N4046.52. We propose that a water molecule bridges ACh and N4046.52. The other ACh terminal is positively charged, and it interacts with negatively charged D1033.32. The present study revealed that D1033.32 is deprotonated (negatively charged) in both ACh-bound and free states, a suggested mechanism to stabilize the negative charge of D1033.32 in the free M2R.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。