Cross-Linking Characteristics, Morphology, Dynamics, and Mechanical and Thermal Properties of Polychloroprene/Polybutadiene/Nano-Zinc (CR/BR/nZn) Compositions with Reduced Fire Hazard

具有降低火灾危险性的聚氯丁二烯/聚丁二烯/纳米锌 (CR/BR/nZn) 复合材料的交联特性、形态、动力学、机械和热性能

阅读:5
作者:Aleksandra Smejda-Krzewicka, Przemysław Rybiński, Witold Żukowski, Dariusz Bradło, Kinga Wencel, Gabriela Berkowicz-Płatek

Abstract

The properties of unconventional blends of crystallizable and thermo-cross-linkable polychloroprene (CR) with polybutadiene (BR) were investigated in this study. The compositions were prepared using the method of reactive processing and cross-linking in the presence of nano-sized zinc (nZn). The purpose of the research was to assess the efficacy of nano-zinc as a curing agent of polychloroprene and polybutadiene (CR/BR) composites and to obtain rubber goods characterized by increased flame resistance. The blends were filled with nano-silica (aerosil) and fillers of natural origin (chalcedonite or silitin). The cross-linking process was characterized by determining the kinetics curves, the equilibrium swelling, and the Mooney-Rivlin elasticity constants. The morphology of the vulcanizate surface was specified by scanning electron microscopy (SEM). The dynamic and mechanical properties, flammability, and toxicity of gaseous substances involved in thermal decomposition were determined. Mass changes and thermal effects were studied using simultaneous thermal analysis (STA). It was confirmed that nano-zinc is an efficient curing agent for the polychloroprene and polybutadiene compositions, with a satisfactory degree of cross-linking (αc = 0.10, CRI = 4.11 min-1), good mechanical strength (TSb = 5 MPa), satisfactory tear resistance (Ts = 2.9 N/mm), and very high flame resistance (OI = 30%, HRRmax = 283 kW/m2). Filled products could be used as non-combustible materials, confirming the low fire hazard (1/tflashover = 3.5-6.4 kW/m2∙s). The most effective filler of the tested composites was nano-sized silica.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。