Processing of CXCL12 by different osteoblast-secreted cathepsins

成骨细胞分泌的不同组织蛋白酶对 CXCL12 的加工

阅读:1
作者:Nicole D Staudt, Andreas Maurer, Bärbel Spring, Hubert Kalbacher, Wilhelm K Aicher, Gerd Klein

Abstract

Hematopoietic stem and progenitor cells (HSPCs) are known to reside in specialized niches at the endosteum in the trabecular bone. Osteoblasts are the major cell type of the endosteal niche. It is well established that secreted proteases are involved in cytokine-induced mobilization processes that release stem cell from their niches. However, migratory processes such as the regular trafficking of HSPCs between their niches and the periphery are not fully understood. In the current study we analyzed whether osteoblast-secreted cysteine cathepsins are able to reduce the direct interaction of HSPCs with bone-forming osteoblasts. Isolated human osteoblasts were shown to secrete proteolytically active cysteine cathepsins, such as cathepsins B, K, L, and X. All of these cathepsins were able to digest, although with different efficacy, the chemokine CXCL12, which is known to be important for retaining HSPCs in their niches. Of the 4 identified cathepsins, only cathepsin X was able to reduce binding of HSPCs to osteoblasts. Interestingly, nonactivated pro-cathepsin X and mature cathepsin X did not interfere with HSPC-osteoblast interactions. Only pro-cathepsin X treated with dithiothreitol, which unfolds but does not lead to full maturation of cathepsin X, significantly reduced HSPC adhesion to osteoblasts. These observations argue for a role of the accessible cathepsin X prodomain in diminishing cell binding. Our findings strongly suggest that the cysteine cathepsins B, K, and L constitutively secreted by osteoblasts are part of the fine-tuned regulation of CXCL12 in the bone marrow, whereas pro-cathepsin X with its prodomain can affect HSPC trafficking in the niche.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。