A single injection of protein-loaded coacervate-gel significantly improves cardiac function post infarction

单次注射载蛋白凝聚层凝胶可显著改善心肌梗塞后的心脏功能

阅读:7
作者:H K Awada, D W Long, Z Wang, M P Hwang, K Kim, Y Wang

Abstract

After myocardial infarction (MI), the heart undergoes fibrotic pathological remodeling instead of repair and regeneration. With multiple pathologies developing after MI, treatment using several proteins is expected to address this range of pathologies more effectively than a single-agent therapy. A factorial design of experiments study guided us to combine three complementary factors in one injection: tissue inhibitor of metalloproteinases-3 (TIMP-3) was embedded in a fibrin gel for signaling in the initial phase of the treatment, while basic fibroblast growth factor (FGF-2) and stromal cell-derived factor 1-alpha (SDF-1α) were embedded in heparin-based coacervates for sustained release and distributed within the same fibrin gel to exert their effects over a longer period. The gel was then tested in a rat model of myocardial infarction. Contractility of rat hearts treated with the protein coacervate-gel composite stabilized and slightly improved after the first week while contractility continued to decrease in rats treated with free proteins or saline over the 8 week study period. Hearts receiving the protein coacervate-gel composite treatment also exhibited reduced ventricular dilation, inflammation, fibrosis, and extracellular matrix (ECM) degradation. Revascularization, cardiomyocyte preservation, stem cell homing, and increased myocardial strain likely all contributed to the repair. This study demonstrates the potential of a multifactorial therapeutic approach in MI, using three complementary proteins delivered sequentially for comprehensive healing. The study also shows the necessity of controlled delivery for growth factors and cytokines to be an effective treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。