A Geometrically Well-Defined and Systematically Tunable Experimental Model to Transition from Planar to Mesoporous Perovskite Solar Cells

几何定义明确、系统可调的实验模型,用于从平面到介孔钙钛矿太阳能电池的过渡

阅读:8
作者:Dirk Döhler, Pascal Büttner, Florian Scheler, Dominik Thiel, Bianka Puscher, Sebastian Bochmann, Julian Mitrovic, Pablo P Boix, Dirk M Guldi, Ignacio Mínguez-Bacho, Julien Bachmann

Abstract

A series of perovskite solar cells with systematically varying surface area of the interface between n-type electron conducting layer (TiO2) and perovskite are prepared by using an ordered array of straight, cylindrical nanopores generated by anodizing an aluminum layer evaporated onto a transparent conducting electrode. A series of samples with pore length varied from 100 to 500 nm are compared to each other and complemented by a classical planar cell and a mesoporous counterpart. All samples are characterized in terms of morphology, chemistry, optical properties, and performance. All samples absorb light to the same degree, and the increased interface area does not generate enhanced recombination. However, the short circuit current density increases monotonically with the specific surface area, indicating improved charge extraction efficiency. The importance of the slow interfacial rearrangement of ions associated with planar perovskite cells is shown to decrease in a systematic manner as the interfacial surface area increases. The results demonstrate that planar and mesoporous cells obey to the same physical principles and differ from each other quantitatively, not qualitatively. Additionally, the study shows that a significantly lower TiO2 surface area compared to mesoporous TiO2 is needed for an equal charge extraction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。