Improvement of Mechanical Properties and Solvent Resistance of Polyurethane Coating by Chemical Grafting of Graphene Oxide

氧化石墨烯化学接枝改善聚氨酯涂层力学性能及耐溶剂性

阅读:8
作者:Guotao Liang, Fengbiao Yao, Yanran Qi, Ruizhi Gong, Rui Li, Baoxuan Liu, Yueying Zhao, Chenglong Lian, Luming Li, Xiaoying Dong, Yongfeng Li

Abstract

Waterborne polyurethane coatings (WPU) are widely used in various types of coatings due to their environmental friendliness, rich gloss, and strong adhesion. However, their inferior mechanical properties and solvent resistance limit their application on the surface of wood products. In this study, graphene oxide (GO) with nanoscale size, large surface area, and abundant functional groups was incorporated into WPU by chemical grafting to improve the dispersion of GO in WPU, resulting in excellent mechanical properties and solvent resistance of WPU coatings. GO with abundant oxygen-containing functional groups and nanoscale size was prepared, and maintained good compatibility with WPU. When the GO concentration was 0.7 wt%, the tensile strength of GO-modified WPU coating film increased by 64.89%, and the abrasion resistance and pendulum hardness increased by 28.19% and 15.87%, respectively. In addition, GO also improved the solvent resistance of WPU coatings. The chemical grafting strategy employed in this study provides a feasible way to improve the dispersion of GO in WPU and provides a useful reference for the modification of waterborne wood coatings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。