CSTA plays a role in osteoclast formation and bone resorption by mediating the DAP12/TREM2 pathway

CSTA 通过介导 DAP12/TREM2 通路在破骨细胞形成和骨吸收中发挥作用

阅读:5
作者:Rui Wei, Lin Zhang, Wei Hu, Jie Wu, Wei Zhang

Abstract

Cystatin A (CSTA) is a cysteine protease inhibitor that is expressed highly during osteoporosis. However, the exact role of CSTA in osteoporosis remains unknown. In this study, we examined the role of CSTA in the formation, differentiation, and bone resorption of osteoclasts. We extracted bone marrow cells from 8-week-old wildtype mice to obtain RANKL and M-CSF-induced osteoclasts. We performed CSTA overexpression and knockdown experiments in the cells. We analyzed the role of CSTA in the process of osteoclasts by trap staining. In addition, we studied the contribution of CSTA to osteogenesis through the DAP12/TREM2 (DNAX-activating protein of 12 kDa/Triggering receptor expressed on myeloid cells-2) complex. We analyzed the role of CSTA in postmenopausal osteoporosis using OVX mouse models. We found that the silencing of CSTA inhibited the differentiation and formation of osteoclasts. The loss of CSTA weakened the expression of osteoclast marker genes. In contrast, overexpression of CSTA significantly increased differentiation and formation of osteoclasts and enhanced bone resorption. Immunofluorescence staining indicated that CSTA and DAP12 are co-expressed in osteoclasts, and the loss of either DAP12 or TREM2 inhibited osteoclast differentiation and bone resorption. Suppression of CSTA decreased DAP12 and TREM2 expression, whereas overexpression of CSTA rescued the loss of TREM2 expression caused by DAP12 knockdown. Co-immunoprecipitation and co-localization experiments indicated that CSTA interacted with DAP12. In addition, we found that injection of si-CSTA into OVX mice significantly improved bone parameters. Our research indicates that CSTA interacts with the DAP12/TREM2 complex and could be a potential targeted therapy for osteoporosis management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。