Evaluation of ambiguous associations in the amygdala by learning the structure of the environment

通过学习环境结构来评估杏仁核中的模糊关联

阅读:7
作者:Tamas J Madarasz, Lorenzo Diaz-Mataix, Omar Akhand, Edgar A Ycu, Joseph E LeDoux, Joshua P Johansen

Abstract

Recognizing predictive relationships is critical for survival, but an understanding of the underlying neural mechanisms remains elusive. In particular, it is unclear how the brain distinguishes predictive relationships from spurious ones when evidence about a relationship is ambiguous, or how it computes predictions given such uncertainty. To better understand this process, we introduced ambiguity into an associative learning task by presenting aversive outcomes both in the presence and in the absence of a predictive cue. Electrophysiological and optogenetic approaches revealed that amygdala neurons directly regulated and tracked the effects of ambiguity on learning. Contrary to established accounts of associative learning, however, interference from competing associations was not required to assess an ambiguous cue-outcome contingency. Instead, animals' behavior was explained by a normative account that evaluates different models of the environment's statistical structure. These findings suggest an alternative view of amygdala circuits in resolving ambiguity during aversive learning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。