Identification of Potential Artefacts in In Vitro Measurement of Vanadium-Induced Reactive Oxygen Species (ROS) Production

钒诱导活性氧 (ROS) 生成体外测量中潜在伪影的识别

阅读:8
作者:Iwona Zwolak, Ewa Wnuk, Michał Świeca

Abstract

We investigated vanadium, i.e., a redox-active heavy metal widely known for the generation of oxidative stress in cultured mammalian cells, to determine its ability to interfere with common oxidative stress-related bioassays in cell-free conditions. We first assessed the prooxidant abilities (H2O2 level, oxidation of DHR 123, and DCFH-DA dyes) and antioxidant capacity (ABTS, RP, OH, and DPPH methods) of popular mammalian cell culture media, i.e., Minimal Essential Medium (MEM), Dulbecco's Minimal Essential Medium (DMEM), Dulbecco's Minimal Essential Medium-F12 (DMEM/F12), and RPMI 1640. Out of the four media studied, DMEM has the highest prooxidant and antioxidant properties, which is associated with the highest concentration of prooxidant and antioxidant nutrients in its formulation. The studied vanadium compounds, vanadyl sulphate (VOSO4), or sodium metavanadate (NaVO3) (100, 500, and 1000 µM), either slightly increased or decreased the level of H2O2 in the studied culture media. However, these changes were in the range of a few micromoles, and they should rather not interfere with the cytotoxic effect of vanadium on cells. However, the tested vanadium compounds significantly stimulated the oxidation of DCFH-DA and DHR123 in a cell-independent manner. The type of the culture media and their pro-oxidant and antioxidant abilities did not affect the intensity of oxidation of these dyes by vanadium, whereas the vanadium compound type was important, as VOSO4 stimulated DCFH-DA and DHR oxidation much more potently than NaVO3. Such interactions of vanadium with these probes may artefactually contribute to the oxidation of these dyes by reactive oxygen species induced by vanadium in cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。