IL-1beta-driven ST2L expression promotes maturation resistance in rapamycin-conditioned dendritic cells

IL-1beta 驱动的 ST2L 表达促进雷帕霉素条件性树突状细胞的成熟抵抗

阅读:5
作者:Heth R Turnquist, Tina L Sumpter, Allan Tsung, Alan F Zahorchak, Atsunori Nakao, Gerard J Nau, Foo Y Liew, David A Geller, Angus W Thomson

Abstract

Maturation resistance and tolerogenic properties can be conferred on human and murine dendritic cells (DC), crucial regulators of T cell responses, by exposure to rapamycin (RAPA), a "tolerance-sparing" immunosuppressive agent. Mechanisms underlying this acquired unresponsiveness, typified by diminished functional responses to TLR or CD40 ligation, have not been identified. We report that in vitro and in vivo conditioning of murine myeloid DC with RAPA elicits the de novo production of IL-1beta by otherwise phenotypically immature DC. Interestingly, IL-1beta production promotes overexpression of the transmembrane form of the IL-1R family member, IL-1R-like 1, also know as ST2 on RAPA-conditioned DC (RAPA-DC). ST2 is the recently identified receptor for IL-33, a cytokine favoring Th2 responses. In addition, transmembrane ST2, or ST2L, has been implicated as a potent negative regulator of TLR signaling. RAPA-DC generated from ST2-/- mice exhibited higher levels of costimulatory molecules (CD86) than wild-type RAPA-DC. Consistent with its regulatory function, IL-1beta-induced ST2L expression suppressed the responsiveness of RAPA-DC to TLR or CD40 ligation. Thus, as a result of their de novo production of IL-1beta, RAPA-DC up-regulate ST2L and become refractory to proinflammatory, maturation-inducing stimuli. This work identifies a novel mechanism through which a clinically important immunosuppressant impedes the capacity of DC to mature and consequently stimulate effector/adaptive T cell responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。