In Vitro Characterization of an Anodized Surface of a Dental Implant Collar and Dental Abutment on Peri-Implant Cellular Response

牙种植体颈圈和牙基台阳极氧化表面对种植体周围细胞反应的体外表征

阅读:6
作者:Valeria Traver-Méndez, Octavi Camps-Font, Francesc Ventura, Miquel Angel Nicolau-Sansó, Carles Subirà-Pifarré, Rui Figueiredo, Eduard Valmaseda-Castellón

Abstract

The purpose of this paper was to determine the effect of anodization on the in vitro proliferation and adhesion of immortalized human keratinocytes (HaCats) and mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) in Titanium Grade 23 (Ti6Al4V ELI) discs and to describe the surface topography, roughness, and composition of dental implants (body and collar) and abutments submitted to an area-specific anodization process. HaCat cells and BM-MSCs were seeded onto discs with three different surface treatments: machined, area-specific anodization for abutments, and area-specific anodization for implant collars. Cell proliferation was assessed using a resazurin-based fluorescent dye on days 1, 3, and 7, while cell adhesion was examined using scanning electron microscopy (SEM). Surface topography, roughness, and composition were evaluated for six implant bodies with an anodized rough surface, six anodized implant smooth collars, and six anodized prosthetic abutments. Both HaCats and BM-MSCs showed increased viability over time (p < 0.001) with no statistically significant differences among the different surfaces (p = 0.447 HaCats and p = 0.631 BM-MSCs). SEM analysis revealed an enhanced presence and adhesion of HaCat cells on the anodized surface for the implant collars and an increased adhesion of BM-MSCs on both the anodized and machined surface abutments. The topography characteristics of the treated implants and abutments varied depending on the specific implant region. Chemical analysis confirmed the presence of oxygen, calcium, phosphorus, and sodium on the anodized surfaces. The area-specific anodization process can be utilized to create variable topography, increase the specific surface area, and introduce oxygen, calcium, phosphorus, and sodium to dental implants and abutments. While BM-MSCs and HaCat cells showed similar adhesion and proliferation on anodized and machined surfaces, a positive interaction between anodized Ti6Al4V ELI surfaces and these two cell lines present in the peri-implant mucosa was observed. Due to the limitations of the present study, further research is necessary to confirm these findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。