In Vitro Toxicity Screening of Fifty Complex Mixtures in HepG2 Cells

五十种复合混合物在 HepG2 细胞中的体外毒性筛选

阅读:7
作者:Sunmi Kim, Kyounghee Kang, Haena Kim, Myungwon Seo

Abstract

To develop the risk prediction technology for mixture toxicity, a reliable and extensive dataset of experimental results is required. However, most published literature only provides data on combinations containing two or three substances, resulting in a limited dataset for predicting the toxicity of complex mixtures. Complex mixtures may have different mode of actions (MoAs) due to their varied composition, posing difficulty in the prediction using conventional toxicity prediction models, such as the concentration addition (CA) and independent action (IA) models. The aim of this study was to generate an experimental dataset comprising complex mixtures. To identify the target complex mixtures, we referred to the findings of the HBM4EU project. We identified three groups of seven to ten components that were commonly detected together in human bodies, namely environmental phenols, perfluorinated compounds, and heavy metal compounds, assuming these chemicals to have different MoAs. In addition, a separate mixture was added consisting of seven organophosphate flame retardants (OPFRs), which may have similar chemical structures. All target substances were tested for cytotoxicity using HepG2 cell lines, and subsequently 50 different complex mixtures were randomly generated with equitoxic mixtures of EC10 levels. To determine the interaction effect, we calculated the model deviation ratio (MDR) by comparing the observed EC10 with the predicted EC10 from the CA model, then categorized three types of interactions: antagonism, additivity, and synergism. Dose-response curves and EC values were calculated for all complex mixtures. Out of 50 mixtures, none demonstrated synergism, while six mixtures exhibited an antagonistic effect. The remaining mixtures exhibited additivity with MDRs ranging from 0.50 to 1.34. Our experimental data have been formatted to and constructed for the database. They will be utilized for further research aimed at developing the combined CA/IA approaches to support mixture risk assessment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。