Substrate stiffness induces neutrophil extracellular trap (NET) formation through focal adhesion kinase activation

基质硬度通过激活粘着斑激酶诱导中性粒细胞胞外陷阱 (NET) 形成

阅读:8
作者:Jefferson O Abaricia, Arth H Shah, Rene Olivares-Navarrete

Abstract

Neutrophils predominate the early inflammatory response to tissue injury and implantation of biomaterials. Recent studies have shown that neutrophil activation can be regulated by mechanical cues such as stiffness or surface wettability; however, it is not known how neutrophils sense and respond to physical cues, particularly how they form neutrophil extracellular traps (NET formation). To examine this, we used polydimethylsiloxane (PDMS) substrates of varying physiologically relevant stiffness (0.2-32 kPa) and examined the response of murine neutrophils to untreated surfaces or to surfaces coated with various extracellular matrix proteins recognized by integrin heterodimers (collagen, fibronectin, laminin, vitronectin, synthetic RGD). Neutrophils on higher stiffness PDMS substrates had increased NET formation and higher secretion of pro-inflammatory cytokines and chemokines. Extracellular matrix protein coatings showed that fibronectin induced the most NET formation and this effect was stiffness dependent. Synthetic RGD peptides induced similar levels of NET formation and pro-inflammatory cytokine release than the full-length fibronectin protein. To determine if the observed NET formation in response to substrate stiffness required focal adhesion kinase (FAK) activity, which is down stream of integrin activation, FAK inhibitor PF-573228 was used. Inhibition of FAK using PF-573228 ablated the stiffness-dependent increase in NET formation and pro-inflammatory molecule secretion. These findings demonstrate that neutrophils regulate NET formation in response to physical and mechanical biomaterial cues and this process is regulated through integrin/FAK signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。