Stress-Relieving Carboxylated Polythiophene/Single-Walled Carbon Nanotube Conductive Layer for Stable Silicon Microparticle Anodes in Lithium-Ion Batteries

缓解应力的羧基化聚噻吩/单壁碳纳米管导电层可用于锂离子电池中稳定的硅微粒阳极

阅读:6
作者:Donghee Gueon, Haoze Ren, Zeyuan Sun, Bar Mosevitzky Lis, Dang D Nguyen, Esther S Takeuchi, Amy C Marschilok, Kenneth J Takeuchi, Elsa Reichmanis

Abstract

Stress-relieving and electrically conductive single-walled carbon nanotubes (SWNTs) and conjugated polymer, poly[3-(potassium-4-butanoate)thiophene] (PPBT), wrapped silicon microparticles (Si MPs) have been developed as a composite active material to overcome technical challenges such as intrinsically low electrical conductivity, low initial Coulombic efficiency, and stress-induced fracture due to severe volume changes of Si-based anodes for lithium-ion batteries (LIBs). The PPBT/SWNT protective layer surrounding the surface of the microparticles physically limits volume changes and inhibits continuous solid electrolyte interphase (SEI) layer formation that leads to severe pulverization and capacity loss during cycling, thereby maintaining electrode integrity. PPBT/SWNT-coated Si MP anodes exhibited high initial Coulombic efficiency (85%) and stable capacity retention (0.027% decay per cycle) with a reversible capacity of 1894 mA h g-1 after 300 cycles at a current density of 2 A g-1, 3.3 times higher than pristine Si MP anodes. The stress relaxation and underlying mechanism associated with the incorporation of the PPBT/SWNT layer were interpreted by quasi-deterministic and quantitative stress analyses of SWNTs through in situ Raman spectroscopy. PPBT/SWNT@Si MP anodes can maintain reversible stress recovery and 45% less variation in tensile stress compared with SWNT@Si MP anodes during cycling. The results verify the benefits of stress relaxation via a protective capping layer and present an efficient strategy to achieve long cycle life for Si-based anodes for next-generation LIBs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。