Aortic adventitial fibroblast sensitivity to mitogen activated protein kinase inhibitors depends on substrate stiffness

主动脉外膜成纤维细胞对丝裂原活化蛋白激酶抑制剂的敏感性取决于基质硬度

阅读:7
作者:Rebecca A Scott, Prathamesh M Kharkar, Kristi L Kiick, Robert E Akins

Abstract

Adventitial fibroblasts (AFs) are key determinants of arterial function and critical mediators of arterial disease progression. The effects of altered stiffness, particularly those observed across individuals during normal vascular function, and the mechanisms by which AFs respond to altered stiffness, are not well understood. To study the effects of matrix stiffness on AF phenotype, cytokine production, and the regulatory pathways utilized to interpret basic cell-matrix interactions, human aortic AFs were grown in 5%, 7.5%, and 10% (w/v%) PEG-based hydrogels with Young's moduli of 1.2, 3.3, and 9.6 kPa, respectively. In 5% gels, AFs had higher proliferation rates, elevated monocyte chemoattractant protein-1 secretion, and enhanced monocyte recruitment. Significantly more AFs were α-smooth muscle actin positive in 7.5% gels, indicating myofibroblast development. AFs in 10% gels had low proliferation rates but produced high levels of interleukin-6 and vascular endothelial growth factor-A. Importantly, these modulus-dependent changes in AF phenotype were accompanied by alterations in the mitogen-activated protein kinase (MAPK) pathways contributing to the production of cytokines. These data indicate that complex cell regulatory changes occur with altered tissue stiffness and suggest that therapeutics affecting MAPK pathways may have altered effects on AFs depending on substrate stiffness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。