Analysis of the human immunodeficiency virus type 1 M group Vpu domains involved in antagonizing tetherin

人类免疫缺陷病毒 1 型 M 组 Vpu 结构域参与拮抗 Tetherin 的分析

阅读:5
作者:Sarah J Petit, Caroline Blondeau, Greg J Towers

Abstract

Zoonosis of chimpanzee simian immunodeficiency virus cpz to humans has given rise to both pandemic (M) and non-pandemic (O, N and P) groups of human immunodeficiency virus type-1 (HIV). These lentiviruses encode accessory proteins, including Vpu, which has been shown to reduce CD4 levels on the cell surface, as well as increase virion release from the cell by antagonizing tetherin (CD317, BST2). Here, we confirm that O group Vpus (Ca9 and BCF06) are unable to counteract tetherin or downregulate the protein from the cell surface, although they are still able to reduce cell-surface CD4 levels. We hypothesize that this inability to antagonize tetherin may have contributed to O group viruses failing to achieve pandemic levels of human-to-human transmission. Characterization of chimeric O/M group Vpus and Vpu mutants demonstrate that the Vpu-tetherin interaction is complex, involving several domains. We identify specific residues within the transmembrane proximal region that, along with the transmembrane domain, are crucial for tetherin counteraction and enhanced virion release. We have also shown that the critical domains are responsible for the localization of M group Vpu to the trans-Golgi network, where it relocalizes tetherin to counteract its function. This work sheds light on the acquisition of anti-tetherin activity and the molecular details of pandemic HIV infection in humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。