Improving Sensitivity and Specificity of Amyloid-β Peptides and Tau Protein Detection with Antibiofouling Magnetic Nanoparticles for Liquid Biopsy of Alzheimer's Disease

使用抗生物污染磁性纳米粒子提高阿尔茨海默病液体活检对淀粉样β肽和Tau蛋白检测的灵敏度和特异性

阅读:6
作者:Yuancheng Li, Esther Lim, Travis Fields, Hui Wu, Yaolin Xu, Y Andrew Wang, Hui Mao

Abstract

Alzheimer's disease (AD) is a growing global healthcare burden affecting the aging population and society. Given the lack of effective treatment to AD, early detection at the prodromal stage and timely monitoring of changes during progression are considered the best approach to control and intervene in disease progression. "Liquid biopsy" of AD biomarkers amyloid-β peptides (Aβs) and tau proteins in the cerebrospinal fluid (CSF) or blood samples holds great promises for cost-effective, widely accessible, and easy-administrated noninvasive detection and follow-up of AD. However, current in vitro detection methods have not yet demonstrated sufficient sensitivity and specificity using neither Aβs nor tau proteins biomarkers. One major challenge of accurate detection and measurement of biomarker levels in biofluidic samples is the biofouling effect with nonspecific adsorption of unwanted biomolecules, such as various serum proteins, on the surface of targeted detecting agents or devices, causing false-positive and false-negative findings. In this study, antibiofouling polymer polyethylene glycol-block-allyl glycidyl ether (PEG-b-AGE) coated magnetic iron oxide nanoparticles (IONPs) capable of suppressing the nonspecific interactions with biomolecules, especially proteins, were investigated for the immunomagnetic capturing of Aβ40 and Aβ42 peptides and tau protein spiked in CSF- and serum-mimicking samples using corresponding antibodies conjugated as targeting ligands. Antibody-conjugated antibiofouling IONPs demonstrated improved specificity (>90%) and sensitivity (>95%) over those of antibody-conjugated magnetic micron beads (Dynabeads, ∼50% specificity and 30-40% sensitivity) widely used as magnetic separating agents under the same experimental conditions with the presence of nontargeted interfering proteins. The antibody-conjugated IONPs also exhibited significantly higher sensitivities (80-90%) and better performance of capturing Aβs and tau protein from the human whole blood samples than antibody-conjugated Dynabeads (∼20%).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。