A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms

一种允许维持原代人类急性髓系白血病起始细胞的类似生态位的培养系统:一种解读其化学抗性和自我更新机制的新工具

阅读:10
作者:Emmanuel Griessinger, Fernando Anjos-Afonso, Irene Pizzitola, Kevin Rouault-Pierre, Jacques Vargaftig, David Taussig, John Gribben, François Lassailly, Dominique Bonnet

Abstract

Acute myeloid leukemia-initiating cells (LICs) are responsible for the emergence of leukemia and relapse after chemotherapy. Despite their identification more than 15 years ago, our understanding of the mechanisms responsible for their self-renewal activity and their chemoresistance remains poor. The slow progress in this area is partly due to the difficulty of studying these cells ex vivo. Indeed, current studies are reliant on xenotransplantation assays in immunodeficient mice. In this paper, we report that by modeling key elements of the bone marrow niche using different stromal feeder layers and hypoxic culture conditions, we can maintain LICs over at least 3 weeks and support their self-renewal properties demonstrated through primary and secondary successful xenograft. We provide a proof of principle that this niche-like culture system can be used to study LIC chemoresistance following in vitro cytarabine treatment similarly to the xenograft chemotherapy model. We found that although LICs are believed to be more chemoresistant than non-LICs, functionally defined LICs are not enriched after cytarabine treatment, and heterogeneity in their resistance to treatment can be seen between patients and even within the same patient. We present a culture system that can be used as an in vitro surrogate for xenotransplantation and that has the potential to dramatically increase the throughput of the investigation of LICs. This would further provide the means by which to identify and target the functionality of the different signaling pathways involved in the maintenance and resistance of LICs to improve acute myeloid leukemia treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。