The Effect of the Mechanical Properties of the 3D Printed Gelatin/Hyaluronic Acid Scaffolds on hMSCs Differentiation Towards Chondrogenesis

3D 打印明胶/透明质酸支架的机械性能对 hMSCs 向软骨分化的影响

阅读:5
作者:Kyoung Choi, Cho Young Park, Jun Shik Choi, Young-Jin Kim, Seok Chung, Sanghoon Lee, Chun-Ho Kim #, Sang Jun Park #

Background

Tissue engineering, including 3D bioprinting, holds great promise as a therapeutic tool for repairing cartilage defects. Mesenchymal stem cells have the potential to treat various fields due to their ability to differentiate into different cell types. The biomimetic substrate, such as scaffolds and hydrogels, is a crucial factor that affects cell behavior, and the mechanical properties of the substrate have been shown to impact differentiation during incubation. In this study, we examine the effect of the mechanical properties of the 3D printed scaffolds, made using different concentrations of cross-linker, on hMSCs differentiation towards chondrogenesis.

Conclusion

The mechanical properties of 3D printed gelatin/HyA scaffolds cross-linked using various concentrations of DMTMM can influence the differentiation of hMSCs into chondrocytes.

Methods

The 3D scaffold was fabricated using 3D bioprinting technology with gelatin/hyaluronic acid (HyA) biomaterial ink. Crosslinking was achieved by using different concentrations of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methlymorpholinium chloride n-hydrate (DMTMM), allowing for control of the scaffold's mechanical properties. The printability and stability were also evaluated based on the concentration of DMTMM used. The effects of the gelatin/HyA scaffold on chondrogenic differentiation was analyzed by utilizing various concentrations of DMTMM.

Results

The addition of HyA was found to improve the printability and stability of 3D printed gelatin/HyA scaffolds. The mechanical properties of the 3D gelatin/HyA scaffold could be regulated through the use of different concentrations of DMTMM cross-linker. In particular, the use of 0.25 mM DMTMM for crosslinking the 3D gelatin/HyA scaffold resulted in enhanced chondrocyte differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。