Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA-126-Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full-Thickness Skin Defects in a Diabetic Rat Model

壳聚糖伤口敷料含有源自过表达 MicroRNA-126 的滑膜间充质干细胞的外泌体,可持续释放外泌体并治愈糖尿病大鼠模型中的全层皮肤缺损

阅读:9
作者:Shi-Cong Tao, Shang-Chun Guo, Min Li, Qin-Fei Ke, Ya-Ping Guo, Chang-Qing Zhang

Abstract

There is a need to find better strategies to promote wound healing, especially of chronic wounds, which remain a challenge. We found that synovium mesenchymal stem cells (SMSCs) have the ability to strongly promote cell proliferation of fibroblasts; however, they are ineffective at promoting angiogenesis. Using gene overexpression technology, we overexpressed microRNA-126-3p (miR-126-3p) and transferred the angiogenic ability of endothelial progenitor cells to SMSCs, promoting angiogenesis. We tested a therapeutic strategy involving controlled-release exosomes derived from miR-126-3p-overexpressing SMSCs combined with chitosan. Our in vitro results showed that exosomes derived from miR-126-3p-overexpressing SMSCs (SMSC-126-Exos) stimulated the proliferation of human dermal fibroblasts and human dermal microvascular endothelial cells (HMEC-1) in a dose-dependent manner. Furthermore, SMSC-126-Exos also promoted migration and tube formation of HMEC-1. Testing this system in a diabetic rat model, we found that this approach resulted in accelerated re-epithelialization, activated angiogenesis, and promotion of collagen maturity in vivo. These data provide the first evidence of the potential of SMSC-126-Exos in treating cutaneous wounds and indicate that modifying the cells-for example, by gene overexpression-and using the exosomes derived from these modified cells provides a potential drug delivery system and could have infinite possibilities for future therapy. Stem Cells Translational Medicine 2017;6:736-747.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。