Systematic Adaptation of Bacillus licheniformis to 2-Phenylethanol Stress

地衣芽孢杆菌对 2-苯乙醇胁迫的系统适应

阅读:7
作者:Yangyang Zhan, Haixia Xu, Hween Tong Tan, Ying Swan Ho, Dongxiao Yang, Shuwen Chen, Dave Siak-Wei Ow, Xin Lv, Fang Wei, Xuezhi Bi, Shouwen Chen

Abstract

The compound 2-phenylethanol (2-PE) is a bulk flavor and fragrance with a rose-like aroma that can be produced by microbial cell factories, but its cellular toxicity inhibits cellular growth and limits strain performance. Specifically, the microbe Bacillus licheniformis has shown a strong tolerance to 2-PE. Understanding these tolerance mechanisms is crucial for achieving the hyperproduction of 2-PE. In this report, the mechanisms of B. licheniformis DW2 resistance to 2-PE were studied by multi-omics technology coupled with physiological and molecular biological approaches. 2-PE induced reactive oxygen species formation and affected nucleic acid, ribosome, and cell wall synthesis. To manage 2-PE stress, the antioxidant and global stress response systems were activated; the repair system of proteins and homeostasis of the ion and osmotic were initiated. Furthermore, the tricarboxylic acid cycle and NADPH synthesis pathways were upregulated; correspondingly, scanning electron microscopy revealed that cell morphology was changed. These results provide deeper insights into the adaptive mechanisms of B. licheniformis to 2-PE and highlight the potential targets for genetic manipulation to enhance 2-PE resistance. IMPORTANCE The ability to tolerate organic solvents is essential for bacteria producing these chemicals with high titer, yield, and productivity. As exemplified by 2-PE, bioproduction of 2-PE represents a promising alternative to chemical synthesis and plant extraction approaches, but its toxicity hinders successful large-scale microbial production. Here, a multi-omics approach is employed to systematically study the mechanisms of B. licheniformis DW2 resistance to 2-PE. As a 2-PE-tolerant strain, B. licheniformis displays multifactorial mechanisms of 2-PE tolerance, including activating global stress response and repair systems, increasing NADPH supply, changing cell morphology and membrane composition, and remodeling metabolic pathways. The current work yields novel insights into the mechanisms of B. licheniformis resistance to 2-PE. This knowledge can also be used as a clue for improving bacterial performances to achieve industrial-scale production of 2-PE and potentially applied to the production of other relevant organic solvents, such as tyrosol and hydroxytyrosol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。