Enhanced targeting with heterobivalent ligands

利用异二价配体增强靶向性

阅读:5
作者:Liping Xu, Josef Vagner, Jatinder Josan, Ronald M Lynch, David L Morse, Brenda Baggett, Haiyong Han, Eugene A Mash, Victor J Hruby, Robert J Gillies

Abstract

A novel approach to specifically target tumor cells for detection and treatment is the proposed use of heteromultivalent ligands, which are designed to interact with, and noncovalently crosslink, multiple different cell surface receptors. Although enhanced binding has been shown for synthetic homomultivalent ligands, proof of cross-linking requires the use of ligands with two or more different binding moieties. As proof-of-concept, we have examined the binding of synthetic heterobivalent ligands to cell lines that were engineered to coexpress two different G-protein-coupled human receptors, i.e., the human melanocortin 4 receptor (MC4R) expressed in combination with either the human delta-opioid receptor (deltaOR) or the human cholecystokinin-2 receptor (CCK2R). Expression levels of these receptors were characterized by time-resolved fluorescence saturation binding assays using Europium-labeled ligands; Eu-DPLCE, Eu-NDP-alpha-MSH, and Eu-CCK8 for the deltaOR, MC4R, and CCK2R, respectively. Heterobivalent ligands were synthesized to contain a MC4R agonist connected via chemical linkers to either a deltaOR or a CCK2R agonist. In both cell systems, the heterobivalent constructs bound with much higher affinity to cells expressing both receptors, compared with cells with single receptors or to cells where one of the receptors was competitively blocked. These results indicate that synthetic heterobivalent ligands can noncovalently crosslink two unrelated cell surface receptors, making feasible the targeting of receptor combinations. The in vitro cell models described herein will lead to the development of multivalent ligands for target combinations identified in human cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。