Single-round isolation of diverse RNA aptamers from a random sequence pool

从随机序列池中单轮分离多种 RNA 适体

阅读:5
作者:Masahiko Imashimizu, Masaki Takahashi, Ryo Amano, Yoshikazu Nakamura

Abstract

Aptamers are oligonucleotide ligands with specific binding affinity to target molecules. Generally, RNA aptamers are selected from an RNA pool with random sequences, using the technique termed SELEX, in which the target-binding RNA molecules are repeatedly isolated and exponentially amplified. Despite several advantages, SELEX often produces uncertain results during the iterative amplifications of the rare target-binding RNA molecules. Here, we develop a non-repeated, primer-less and target immobilization-free isolation method for generating RNA aptamers, which is robust to experimental noise. Uniquely, this method focuses on finding and removal of non-aptamer sequences from the RNA pool by RNase digestion leaving target-bound aptamer molecules, and thus is independent of aptamer types. The undigested RNA sequences remaining are so few in number that they must be mixed with a large excess of a known sequence for further manipulations and this sequence is then removed by restriction digestion followed by high-throughput sequencing analysis to identify aptamers. Using this method, we generated multiple RNA aptamers targeting α-thrombin and TGFβ1 proteins, independently. This method potentially generates thousands of sequences as aptamer candidates, which may enable us to predict a common average sequence or structural property of these aptamers that is different from input RNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。