Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant

置换扫描鉴定出一种新型、具有催化活性的伊布替尼耐药 BTK 半胱氨酸 481 至苏氨酸 (C481T) 变体

阅读:5
作者:A Hamasy, Q Wang, K E M Blomberg, D K Mohammad, L Yu, M Vihinen, A Berglöf, C I E Smith

Abstract

Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。