Artificial antibody created by conformational reconstruction of the complementary-determining region on gold nanoparticles

通过金纳米粒子互补决定区的构象重建创建人工抗体

阅读:8
作者:Gui-Hua Yan, Kun Wang, Zhuxue Shao, Lei Luo, Zheng-Mei Song, Jingqi Chen, Rong Jin, Xiaoyong Deng, Haifang Wang, Zhonglian Cao, Yuanfang Liu, Aoneng Cao

Abstract

To impart biomedical functions to nanoparticles (NPs), the common approach is to conjugate functional groups onto NPs by dint of the functions of those groups per se. It is still beyond current reach to create protein-like specific interactions and functions on NPs by conformational engineering of nonfunctional groups on NPs. Here, we develop a conformational engineering method to create an NP-based artificial antibody, denoted "Goldbody," through conformational reconstruction of the complementary-determining regions (CDRs) of natural antibodies on gold NPs (AuNPs). The seemingly insurmountable task of controlling the conformation of the CDR loops, which are flexible and nonfunctional in the free form, was accomplished unexpectedly in a simple way. Upon anchoring both terminals of the free CDR loops on AuNPs, we managed to reconstruct the "active" conformation of the CDR loops by tuning the span between the two terminals and, as a result, the original specificity was successfully reconstructed on the AuNPs. Two Goldbodies have been created by this strategy to specifically bind with hen egg white lysozyme and epidermal growth factor receptor, with apparent affinities several orders of magnitude stronger than that of the original natural antibodies. Our work demonstrates that it is possible to create protein-like functions on NPs in a protein-like way, namely by tuning flexible surface groups to the correct conformation. Given the apparent merits, including good stability, of Goldbodies, we anticipate that a category of Goldbodies could be created to target different antigens and thus used as substitutes for natural antibodies in various applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。