Functional and molecular modelling studies of two hereditary fructose intolerance-causing mutations at arginine 303 in human liver aldolase

人类肝脏醛缩酶中精氨酸 303 位点两种导致遗传性果糖不耐症的突变的功能和分子建模研究

阅读:9
作者:R Santamaria, G Esposito, L Vitagliano, V Race, I Paglionico, L Zancan, A Zagari, F Salvatore

Abstract

We have identified a novel hereditary fructose intolerance mutation in the aldolase B gene (i.e. liver aldolase) that causes an arginine-to-glutamine substitution at residue 303 (Arg(303)-->Gln). We previously described another mutation (Arg(303)-->Trp) at the same residue. We have expressed the wild-type protein and the two mutated proteins and characterized their kinetic properties. The catalytic efficiency of protein Gln(303) is approx. 1/100 that of the wild-type for substrates fructose 1,6-bisphosphate and fructose 1-phosphate. The Trp(303) enzyme has a catalytic efficiency approx. 1/4800 that of the wild-type for fructose 1,6-bisphosphate; no activity was detected with fructose 1-phosphate. The mutation Arg(303)-->Trp thus substitution impairs enzyme activity more than Arg(303)-->Gln. Three-dimensional models of wild-type, Trp(303) and Gln(303) aldolase B generated by homology-modelling techniques suggest that, because of its larger size, tryptophan exerts a greater deranging effect than glutamine on the enzyme's three-dimensional structure. Our results show that the Arg(303)-->Gln substitution is a novel mutation causing hereditary fructose intolerance and provide a functional demonstration that Arg(303), a conserved residue in all vertebrate aldolases, has a dominant role in substrate binding during enzyme catalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。