Lipid catabolism via CPT1 as a therapeutic target for prostate cancer

通过 CPT1 进行脂质分解代谢作为前列腺癌的治疗靶点

阅读:5
作者:Isabel R Schlaepfer, Leah Rider, Lindsey Ulkus Rodrigues, Miguel A Gijón, Colton T Pac, Lina Romero, Adela Cimic, S Joseph Sirintrapun, L Michael Glodé, Robert H Eckel, Scott D Cramer

Abstract

Prostate cancer is the most commonly diagnosed malignancy among Western men and accounts for the second leading cause of cancer-related deaths. Prostate cancer tends to grow slowly and recent studies suggest that it relies on lipid fuel more than on aerobic glycolysis. However, the biochemical mechanisms governing the relationships between lipid synthesis, lipid utilization, and cancer growth remain unknown. To address the role of lipid metabolism in prostate cancer, we have used etomoxir and orlistat, clinically safe drugs that block lipid oxidation and lipid synthesis/lipolysis, respectively. Etomoxir is an irreversible inhibitor of the carnitine palmitoyltransferase (CPT1) enzyme that decreases β oxidation in the mitochondria. Combinatorial treatments using etomoxir and orlistat resulted in synergistic decreased viability in LNCaP, VCaP, and patient-derived benign and prostate cancer cells. These effects were associated with decreased androgen receptor expression, decreased mTOR signaling, and increased caspase-3 activation. Knockdown of CPT1A enzyme in LNCaP cells resulted in decreased palmitate oxidation but increased sensitivity to etomoxir, with inactivation of AKT kinase and activation of caspase-3. Systemic treatment with etomoxir in nude mice resulted in decreased xenograft growth over 21 days, underscoring the therapeutic potential of blocking lipid catabolism to decrease prostate cancer tumor growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。