CXCR3-CXCL11 Signaling Restricts Angiogenesis and Promotes Pericyte Recruitment

CXCR3-CXCL11 信号限制血管生成并促进周细胞募集

阅读:8
作者:Jihui Lee #, Megan E Goeckel #, Allison Levitas, Sarah Colijn, Jimann Shin, Anna Hindes, Geonyoung Mun, Zarek Burton, Bharadwaj Chintalapati, Ying Yin, Javier Abello, Lilianna Solnica-Krezel, Amber N Stratman

Background

Endothelial cell (EC)-pericyte interactions are known to remodel in response to hemodynamic forces; yet there is a lack of mechanistic understanding of the signaling pathways that underlie these events. Here, we have identified a novel signaling network regulated by blood flow in ECs-the chemokine receptor CXCR3 (CXC motif chemokine receptor 3) and one of its ligands, CXCL11 (CXC motif chemokine ligand 11)-that delimits EC angiogenic potential and promotes pericyte recruitment to ECs during development.

Conclusions

Our results suggest that CXCR3 signaling in ECs helps promote vascular stabilization events during development by preventing EC overgrowth and promoting pericyte recruitment.

Methods

We investigated the role of CXCR3 on vascular development using both 2- and 3-dimensional in vitro assays, to study EC-pericyte interactions and EC behavioral responses to blood flow. Additionally, genetic mutants and pharmacological modulators were used in zebrafish in vivo to study the impacts of CXCR3 loss and gain of function on vascular development.

Results

In vitro modeling of EC-pericyte interactions demonstrates that suppression of EC-specific CXCR3 signaling leads to loss of pericyte association with EC tubes. In vivo, phenotypic defects are particularly noted in the cranial vasculature, where we see a loss of pericyte association with ECs and expansion of the vasculature in zebrafish treated with the Cxcr3 inhibitor AMG487 or in homozygous cxcr3.1/3.2/3.3 triple mutants. We also demonstrate that CXCR3-deficient ECs are more elongated, move more slowly, and have impaired EC-EC junctions compared with their control counterparts. Conclusions: Our results suggest that CXCR3 signaling in ECs helps promote vascular stabilization events during development by preventing EC overgrowth and promoting pericyte recruitment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。