1400W reduces ischemia reperfusion injury in an ex-vivo porcine model of the donation after circulatory death kidney donor

1400W 可减轻循环死亡肾脏捐献者离体猪模型中的缺血再灌注损伤

阅读:10
作者:Sarah A Hosgood, Phillip J Yates, Michael L Nicholson

Aim

To investigate the effects of 1400W-a selective inducible nitric oxide synthase (iNOS) inhibitor in a model of donation after circulatory death (DCD) kidneys.

Conclusion

This study demonstrated that 1400W reduced ischaemia reperfusion injury in this porcine kidney model of DCD donor. Kidneys had improved renal function and reduced oxidative stress.

Methods

Porcine kidneys were retrieved after 25 min warm ischemia. They were then stored on ice for 18 h before being reperfused ex vivo with oxygenated autologous blood on an isolated organ perfusion system. The selective iNOS inhibitor 1400W (10 mg/kg) was administered before reperfusion (n = 6) vs control group (n = 7). Creatinine (1000 μmol/L) was added to the system, renal and tubular cell function and the level of ischemia reperfusion injury were assessed over 3 h of reperfusion using plasma, urine and tissue samples.

Results

Kidneys treated with 1400W had a higher level of creatinine clearance (CrCl) [area under the curve (AUC) CrCl: 2.37 ± 0.97 mL/min per 100 g vs 0.96 ± 0.32 mL/min per 100 g, P = 0.004] and urine output [Total: 320 ± 96 mL vs 156 ± 82 mL, P = 0.008]. There was no significant difference in levels of fractional excretion of sodium (AUC, Fr ex Na+: Control, 186.3% ± 81.7%.h vs 1400W, 153.4% ± 12.1%.h, P = 0.429). Levels of total protein creatinine ratio were significantly lower in the 1400W group after 1 h of reperfusion (1h Pr/Cr: 1400W 9068 ± 6910 mg/L/mmol/L vs Control 21586 ± 5464 mg/L/mmol/L, P = 0.026). Levels of 8-isoprostane were significantly lower in the 1400W group [8-iso/creatinine ratio: Control 239 ± 136 pg/L/mmol/L vs 1400W 139 ± 47 pg/L/mmol/L, P = 0.041].

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。