Lumbosacral spinal proteomic changes during PAR4-induced persistent bladder pain

PAR4 诱发的持续性膀胱疼痛期间腰骶脊柱蛋白质组学变化

阅读:13
作者:Shaojing Ye, Nilesh M Agalave, Fei Ma, Dlovan F D Mahmood, Asma Al-Grety, Payam Emani Khoonsari, Camila I Svensson, Kim Kultima, Pedro L Vera

Abstract

Repeated intravesical activation of protease-activated receptor-4 (PAR4) in mice results in persistent bladder hyperalgesia (BHA). We investigated spinal proteomic changes associated with persistent BHA. Persistent BHA was induced in female mice by repeated (3x; days 0,2,4; n = 9) intravesical instillation of PAR4 activating peptide (PAR4-AP) while scrambled peptide served as the control (no pain; n = 9) group. The threshold to lower abdominal von Frey stimulation was recorded prior to and during treatment. On day 7, L6-S1 spinal segments were excised and examined for proteomic changes using LC-MS/MS. In-depth, unbiased proteomic tandem-mass tag (TMT) analysis identified and relatively quantified 6739 proteins. We identified significant changes with 29 decreasing and 51 increasing proteins in the persistent BHA group and they were associated with neuroprotection, redox modulation, mitochondrial factors, and neuronal-related proteins. In an additional experiment, decreases in protein levels were confirmed by immunohistochemistry for metallothionein 1/2. Our results show that persistent bladder pain is associated with central (spinal) protein changes. Previous work showed that PAR4-induced bladder pain is mediated, at least in part by spinal MIF. Further functional studies of these top changing proteins may lead to the discovery of novel potential therapeutic targets at the spinal level to modulate persistent bladder pain. Future studies will examine the effect of spinal MIF antagonism on PAR4-induced spinal proteomics associated with persistent bladder pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。