A promising antibiotic candidate, brevinin-1 analogue 5R, against drug-resistant bacteria, with insights into its membrane-targeting mechanism

一种有希望的抗生素候选物,brevinin-1 类似物 5R,可对抗耐药细菌,并深入了解其膜靶向机制

阅读:6
作者:Wanchen Zou, Ruize Sun, Aifang Yao, Mei Zhou, Xiaoling Chen, Chengbang Ma, Tao Wang, Yangyang Jiang, Tianbao Chen, Chris Shaw, Lei Wang

Abstract

In recent decades, antimicrobial peptides (AMPs) have held great promise as novel antibiotic agents. However, they have generally been excluded from clinical use due to certain limitations, such as poor biocompatibility and sensitivity to environmental conditions. In this study, we report a novel brevinin-1 type antimicrobial peptide B1LTe, derived from the skin secretion of Hylarana latouchii. Although the novel peptide B1LTe exhibited remarkable antimicrobial effects, its narrow therapeutic index (TI) can result in adverse drug reactions. Thus, the rational design by systematically scanning and replacing the inherent hydrophobic and cationic residues (Leucine and Lysine) with their D-enantiomeric counterparts was conducted to enhance the application potential of B1LTe. Simultaneously, we also applied lysine-to-arginine substitution within the modification. Among the derivates, 5 R demonstrated the highest selectivity and effectiveness against Methicillin-resistant Streptococcus aureus (MRSA), clinic-isolated Streptococcus pyogenes (S. pyogenes) strain, ranging from their planktonic to biofilm cells, both in vitro and in vivo. Furthermore, the remarkable adaptation of 5 R in saline and 20% serum indicates its potential for clinical application. We employed the in silico approach, which revealed the mechanism of interaction between 5 R and bacterial membranes. In addition, further mechanistic studies of 5 R elucidated the association between the collapsed proton motive force (PMF) and membrane perturbation as peptides aggregate on the bacterial membrane. Overall, our study suggests the D-enantiomeric 5 R can be a promising antibiotic agent against MDR bacteria in further clinical development and highlights the significance of cellular PMF as a potential target for the research of peptides' mode of action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。